Industrial Biorefineries and White Biotechnology introduces modern biorefineries as an alternative and as an amendment to industrial crude oil and gas refineries, giving a complete review of the driving forces in modern industrial biotechnology and biochemistry. This book fills a gap in the current knowledge base and will play a key role in advancing technological perspectives in the field.

There has been a tremendous amount of recent scientific and technological development in the area of biorefining, including industrial processes and product development using "green technologies," often referred to as White Biotechnology. This book addresses key requirements for modern and innovative processes in the field of biorefining. It will be of immense use for students and researchers, including biotechnologists and bioengineers. The book also appeals to chemists and biochemists as well as marketing and product development managers in the chemical industry who are looking for summary reviews of the latest developments in biorefining and biotechnology.

Key Features:
- Provides information on the most advanced and innovative treatment processes and technologies for biomass
- Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery
- Gives an update of current biorefinery concepts including wood, algae, lignocellulosic, and hybrid biorefineries
- Discusses integration of processes and technologies for the pretreatment of biomass in an industrial scale
- Details fermentation and metabolic pathways to microbial fuels, chemical intermediates, chemical specialties, and biopolymers

Edited by Ashok Pandey, Rainer Höfer, Mohammad Taherzadeh, K. Madhavan Nampoothiri, and Christian Larroche.
INDUSTRIAL BIOREFINERIES AND WHITE BIOTECHNOLOGY

Edited by
ASHOK PANDEY
RAINER HÖFER
MOHAMMAD TAHERZADEH
K. MADHAVAN NAMPOOTHIRI
CHRISTIAN LARROCHE
CONTENTS

List of Contributors ~ xiii
Preface ~ xvii

PART A: INDUSTRIAL BIOREFINERIES
1. Biorefinery Concepts in Comparison to Petrochemical Refineries
 Ed de Jong and Gerfried Jungmeier
 1. Introduction 3
 2. The Definition for Biorefinery 5
 3. The Economic Value of Biomass Using Biorefining 7
 4. Classification of Biorefineries 9
 5. Conventional Biorefineries 11
 6. Advanced Biorefineries 12
 7. Whole Crop Biorefinery 12
 8. Oleochemical Biorefinery 13
 9. Lignocellulosic Feedstock Biorefinery 13
 10. Syngas Platform Biorefinery (Thermochemical Biorefinery) 14
 11. Next Generation Hydrocarbon Biorefinery 14
 12. Green Biorefinery 15
 13. Marine Biorefinery 16
 14. Chain Development 16
 15. Biorefinery Concepts in Comparison to Petrochemical Refineries 17
 16. Biorefinery Complexity Index 24
 17. Discussion and Conclusions 27
 References 30

2. Algal Biorefineries
 Yanna Liang, Tyler Kashdan, Christy Sterner, Lilli Dombrowski, Ingolf Petrick, Michael Kröger and Rainer Höfer
 1. Introduction 36
 2. Algal Research in the USA 38
 3. Macroalgae 46
 4. Microalgae 48
 5. Downstream Processes 55
 6. Products Produced from Algae at Commercial Scales 69
 7. Conclusions 83
 References 84
3A. Pulp Mills and Wood-Based Biorefineries

Raimo Alén

1. General Aspects 91
2. Pulping Processes and Their By-Products 96
3. Pretreatments of Wood Chips Prior to Pulping 109
4. Thermochemical Conversion Methods 113
5. Conclusions 119

References 120

3B. The Pine Biorefinery Platform Chemicals Value Chain

Rainer Höfer

1. Introduction 127
2. Extractable Volatile Oils 130
3. The Tall Oil Value Chain 136
4. Conclusion 151

References 152

4A. Sugar- and Starch-Based Biorefineries

Rainer Höfer

1. Introduction 158
2. Sugar and Starch Crops 159
3. Sugarbeet Refining and Processing 179
4. Alcoholic Fermentation 183
5. The Ethanol-Based C2—Value Chain 190
6. Beyond C2 Platform Chemicals by Fermentation 192
7. Sucrochemistry 201
8. Starch Refining and Processing 205
9. Starch Uses 211
10. Conclusions 227

Acknowledgment 228

References 228

4B. Ethanol from Sugarcane in Brazil: Economic Perspectives

Luiz Augusto Horta Nogueira and Rafael Silva Capaz

1. Introduction 237
2. Ethanol from Sugarcane in Brazil: Context and Evolution 238
3. Economic Aspects of Ethanol from Sugarcane in Brazil 240
4. Final Remarks 244

References 245
5. **Vegetable Oil Biorefineries** 247
 Coraline Caulet and Jérôme Le Nôtre
 1. Introduction 247
 2. Vegetable Oil Feedstock 249
 3. The Whole-Plant Biorefinery Concept—From Plants to Industrial Products 252
 4. Industrial Vegetable Oil Biorefineries 264
 5. Future Challenges of Industrialization 266
 6. Conclusions and Perspectives 268
 References 268

6. **Biogas Biorefineries** 271
 Harald Lindorfer and Bettina Frauz
 1. Introduction 271
 2. Substrates for Biogas Production 275
 3. Biogas Utilization 280
 4. The Chemical Platform Methane 284
 5. Fertilizer Production 284
 6. Mass and Energy Balances 288
 7. Other Biorefinery Concepts with Strong Focus on Biogas Production 291
 8. Perspectives of Biogas Biorefineries 292
 References 293

7. **Civilization Biorefineries: Efficient Utilization of Residue-Based Bioresources** 295
 Ina Körner
 1. Introduction 296
 2. Primary, Secondary, Tertiary, and Quaternary Bioresources 297
 3. Civilization Biorefineries 311
 4. Approaches Toward Civilization Biorefineries 321
 References 337

8. **Biomass Pyrolysis for Hybrid Biorefineries** 341
 Paul J. de Wild
 1. Introduction 341
 2. Pyrolysis-Based Fractionation of Biomass 342
 3. Biomass Pyrolysis for Biorefineries 348
 4. A Pyrolysis-Based Hybrid Biorefinery Concept 360
 5. Conclusion 365
 References 365
9. Single-Cell Biorefinery 369
 Qingsheng Qi and Quanfeng Liang
 1. Introduction 369
 2. Simultaneous Substrates Utilization in Single Cell 371
 3. Coproduction in Single Cell 375
 4. Single-Cell Biorefinery 381
 5. Conclusion 384
 Acknowledgments 384
 References 384

PART B: WHITE BIOTECHNOLOGY 389

10. Biocatalysis 391
 Licia M. Pera, Mario D. Baigori, Ashok Pandey and Guillermo R. Castro
 1. Introduction 391
 2. Screening for Novel Biocatalyst 392
 3. Development of Biocatalysts 394
 4. Raw Materials 403
 5. Reaction Media 404
 6. Conclusions 404
 References 405

11. White Biotechnology for Organic Acids 409
 Guocheng Du, Long Liu and Jian Chen
 1. Introduction 409
 2. Conclusion 434
 References 435

12. White Biotechnology for Amino Acids 445
 Murali Anusree and K. Madhavan Nampoothiri
 1. Introduction 445
 2. History and Evolutionary Route 446
 3. Production Processes 447
 4. Strain Improvement 451
 5. Amino Acids in Detail 454
 6. Alternative Sources for Amino Acid Production 466
 7. Prospective and Outlook 466
Acknowledgment

References 467

13. Industrial Enzymes 473

Reeta R. Singhaniya, Anil K. Patel, Leya Thomas, Mandavi Goswami, Balendu S. Giri *and* Ashok Pandey

1. **Introduction** 474
2. **Enzymes Classification** 475
3. **Microbial Enzyme Production** 476
4. **Industrial Application of Enzymes** 486
5. **Enzyme Immobilization** 493
6. **Global Enzyme Market Scenario** 494
7. **Conclusion** 496
References 496

14. White Biotechnology in Biosurfactants 499

Kuttuvan Valappil Sajna, Rainer Höfer, Rajeev K. Sukumaran, Lalitha Devi Gottumukkala *and* Ashok Pandey

1. **Introduction** 499
2. **Biosurfactants** 501
3. **White Biotechnology in Glycolipids Biosurfactants** 502
4. **White Biotechnology in Lipopeptide and Lipoprotein Biosurfactants** 510
5. **White Biotechnology in Polymeric Biosurfactants** 515
6. **Conclusion and Future Perspective** 517
Acknowledgment 517
References 517

15. Exopolysaccharides from Prokaryotic Microorganisms—Promising Sources for White Biotechnology Processes 523

Margarita Kambourova, E. Toksoy Oner *and* Annarita Poli

1. **Introduction and Definition** 523
2. **Advantages and Disadvantages in Microbial Production of EPSs** 524
3. **Composition and Structure** 526
5. **Polysaccharide Roles in the Prokaryotic Cell** 531
6. **Synthetic Pathways** 533
7. **EPS Production** 533
8. **Commercially Important Properties and Industrial Applications of Market-Valued EPS** 536
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>New Microbial EPS, EPS from Extremophiles</td>
<td>546</td>
</tr>
<tr>
<td>10</td>
<td>Conclusion</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>547</td>
</tr>
<tr>
<td>16</td>
<td>White Biotechnology for Biopolymers</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Guo-Qiang Chen, Juanyu Zhang, and Ying Wang</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>555</td>
</tr>
<tr>
<td>2</td>
<td>Strains for Production of PHA</td>
<td>559</td>
</tr>
<tr>
<td>3</td>
<td>PHA Produced in Industrial Scale</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>572</td>
</tr>
<tr>
<td>17</td>
<td>Microbial Poly-3-Hydroxybutyrate and Related Copolymers</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Raveendran Sindhu, Parameswaran Binod, and Ashok Pandey</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>576</td>
</tr>
<tr>
<td>2</td>
<td>PHB-Producing Microbes</td>
<td>578</td>
</tr>
<tr>
<td>3</td>
<td>Fermentation Strategies</td>
<td>582</td>
</tr>
<tr>
<td>4</td>
<td>Downstream Operations</td>
<td>586</td>
</tr>
<tr>
<td>5</td>
<td>Characterization Techniques</td>
<td>588</td>
</tr>
<tr>
<td>6</td>
<td>Strain Improvement, Mutation, and Metabolic Engineering</td>
<td>592</td>
</tr>
<tr>
<td>7</td>
<td>Substrate Manipulation for the Production of Various Classes of PHB</td>
<td>595</td>
</tr>
<tr>
<td>8</td>
<td>Applications</td>
<td>599</td>
</tr>
<tr>
<td>9</td>
<td>Conclusion and Perspectives</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>601</td>
</tr>
<tr>
<td>18</td>
<td>White Biotechnology in Cosmetics</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>Kuttuvan Valappil Sajna, Lalitha Devi Gottumukkala, Rajeev K. Sukumaran, and Ashok Pandey</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>608</td>
</tr>
<tr>
<td>2</td>
<td>Functional Properties of Cosmetically Important Compounds</td>
<td>610</td>
</tr>
<tr>
<td>3</td>
<td>Classification of Biotechnologically Derived Cosmetic Ingredients</td>
<td>614</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td>644</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>644</td>
</tr>
<tr>
<td>19</td>
<td>Production and Extraction of Polysaccharides and Oligosaccharides and Their Use as New Food Additives</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td>Clarisse Nobre, Miguel Ângelo Cerqueira, Lígia Raquel Rodrigues, Antônio Augusto Vicente, and José Antônio Teixeira</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>653</td>
</tr>
<tr>
<td>2</td>
<td>Extraction, Production, and Purification of Polysaccharides and Oligosaccharides</td>
<td>656</td>
</tr>
</tbody>
</table>
3. Food Applications of Polysaccharides and Oligosaccharides 662
4. Health and Nutritional Benefits of Polysaccharides and Oligosaccharides 666
5. Regulation and Safety Aspects 668
6. Conclusions 670
Acknowledgments 670
References 670

Index 681
LIST OF CONTRIBUTORS

Raimo Alén
Laboratory of Applied Chemistry, University of Jyväskylä, Finland

Murali Anusree
Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Mario D. Baigori
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI–CONICET), Tucumán, Argentina

Parameswaran Binod
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Rafael Silva Capaz
Institute of Natural Resources, Federal University of Itajubá, Itajubá, Brazil

Guillermo R. Castro
Laboratory of Nanobiomaterials–Institute of Applied Biotechnology (CINDEFl), Department of Chemistry, School of Sciences, Universidad Nacional de La Plata–CONICET (CCT La Plata), Argentina

Coraline Caullet
SAS PIVERT, Parc Technologique des Rives de l’Oise, Venette, Compiègne cedex, France

Miguel Ángelo Cerqueira
Centre of Biological Engineering, University of Minho, Braga, Portugal

Guo-Qiang Chen
School of Life Sciences, Tsinghua University, Beijing, China

Jian Chen
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China

Ed de Jong
Avantium Chemicals, Amsterdam, The Netherlands

Paul J. de Wild
Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands

Lilli Dombrowski
Fakultät für Naturwissenschaften, Brandenburgische Technische Universität Cottbus–Senftenberg, Germany

Guocheng Du
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
Bettina Frauz
Schaumann BioEnergy GmbH, Pinneberg, Germany

Balendu S. Giri
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Mandavi Goswami
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Lalitha Devi Gottumukkala
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Rainer Höfer
Editorial Ecosiris, Düsseldorf, Germany

Gerfried Jungmeier
Joanneum Research Forschungsgesellschaft mbH, Institute for Water, Energy and Sustainability, Graz, Austria

Margarita Kambourova
Laboratory of Extremophilic Bacteria, Institute of Microbiology, BAS, Sofia, Bulgaria

Tyler Kashdan
Department of Advanced Energy and Fuels Management, Southern Illinois University, Carbondale, IL, USA

Ina Körner
Hamburg University of Technology (TUHH), Hamburg, Germany; BioResourceInnovation (BRI), Hamburg, Germany

Michael Kröger
DBFZ Deutsches Biomasseforschungszentrum, Leipzig, Germany

Jérôme Le Nôtre
SAS PIVERT, Parc Technologique des Rives de l'Oise, Venette, Compiègne cedex, France

Quanfeng Liang
State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, P. R. China

Yanna Liang
Department of Civil and Environmental Engineering, Southern Illinois University, Carbondale, IL, USA

Harald Lindorfer
Schaumann BioEnergy GmbH, Pinneberg, Germany

Long Liu
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China

K. Madhavan Nampoothiri
Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
Clarisse Nobre
Centre of Biological Engineering, University of Minho, Braga, Portugal

Luiz Augusto Horta Nogueira
Institute of Natural Resources, Federal University of Itajubá, Itajubá, Brazil

E. Toksoy Oner
Department of Bioengineering, Marmara University, Istanbul, Turkey

Ashok Pandey
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Anil K. Patel
DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation, R & D Center, Faridabad, Haryana, India

Licia M. Pera
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI–CONICET), Tucumán, Argentina

Ingolf Petrick
Fakultät für Naturwissenschaften, Brandenburgische Technische Universität Cottbus-Senftenberg, Germany

Annarita Poli
Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy

Qingsheng Qi
State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, P. R. China

Lígia Raquel Rodrigues
Centre of Biological Engineering, University of Minho, Braga, Portugal

Kuttuvan Valappil Sajna
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Raveendran Sindhu
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

Reeta R. Singhaniya
DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation, R & D Center, Faridabad, Haryana, India

Christy Sterner
U.S. Department of Energy, Golden Field Office, Golden, CO, USA

Rajeev K. Sukumaran
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

José António Teixeira
Centre of Biological Engineering, University of Minho, Braga, Portugal
Leya Thomas
Centre for Biofuels and Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India

António Augusto Vicente
Centre of Biological Engineering, University of Minho, Braga, Portugal

Ying Wang
School of Life Sciences, Tsinghua University, Beijing, China

Juanyu Zhang
School of Life Sciences, Tsinghua University, Beijing, China
Although the beginnings are shrouded in the mists of human prehistory, viniculture\(^1\) as well as beer brewing\(^2\) and sourdough bread-making\(^3\) are early domestic technologies. In this sense, yeast microbes reckon among the earliest domesticated organisms and methods of White Biotechnology have accompanied mankind since the very beginnings of civilization. Renewable raw materials have been utilized by mankind through the millennia as food, to feed domesticated animals, to clothe themselves, or as firewood, construction material, and to make articles for daily use. The replacement of craft activity by power-driven machines such as steam engines that were fueled by the fossil raw material coal together with the associated changes in economic and social organization that began in Great Britain in the late eighteenth century represent the beginning of the Industrial Age, characterized inter alia by the improved logistics for people and goods by railways and steam ships. The triumph of fossil raw materials began when, in addition to coal, crude oil (also called petroleum) was discovered from the middle of the nineteenth century as a resource, first for lamp oil (in the USA widely sold as kerosene\(^4\)) and since the early 1900s to produce appropriate hydrocarbon fractions that could fuel internal combustion engines, such as diesel engines (compression-ignition engines), Otto motors (spark-ignition engines), and combustion turbines (jet engines). However, untreated crude is virtually useless, just good to be burned thereby producing an awful smell and a great deal of smoke. Only in a refinery the complex mixture of hydrocarbon molecules in crude oil is separated and converted by fractionation, cracking, reforming, isomerization, hydrotreating operations into petroleum products, which can be used as fuels, lubricants, and as feedstock in petrochemical processes. Today, the fossil raw materials coal, crude oil, and natural gas remain the dominant world energy sources accounting for roughly 80% of world energy supply.\(^5\) However, the Club of Rome’s report published in the year 1972 together with the first oil crisis, which erupted in 1973, already created awareness that the fossil resources on which the industrial base depends are limited and will run out with no major change in the physical, economic, or social relationships of society.\(^6\) The message was further developed when in 1987, the Brundtland commission created the sustainable development concept.\(^7\)

This concept was meant to provide a long-term balance between the environment, the economy, and the social well-being of humanity. As a result, in 1992, the UN Conference on Environment and Development (UNCED), more commonly known as the Rio Earth Summit, established a number of initiatives to promote the uptake of sustainable development worldwide. Contemporaneously, anthropogenic climate change emerged on the public agenda in the mid-to-late 1980s and year 1990, the first report of the Intergovernmental Panel on Climate Change (IPPC) ascertained that (besides the “natural greenhouse effect which already keeps the Earth warmer than it would otherwise be”) “emissions resulting from human activities are substantially increasing the atmospheric concentrations of the greenhouse gases such as carbon dioxide, methane, chlorofluorocarbons, and nitrous oxide. These increases will enhance the greenhouse effect, resulting on average in an additional warming of the Earth’s surface.” The steadily growing global energy demand on the one side and, on the other, the finite nature and instability of fossil fuel supply and, because of their exploitation, the ever-increasing atmospheric concentration of the carbon dioxide greenhouse gas have initiated a turnaround away from fossil fuels toward the utilization of biomass as a renewable raw material and energy resource. Conceptually, the processing of biomass to produce fuels, power, heat, and value-added chemicals would be done analogous to today’s petroleum refineries in conversion facilities called biorefineries. Biomass comprises the entire terrestrial vegetation, defined as the “mass of live or dead organic matter” or, somewhat more specifically, as “the biodegradable fraction of products, waste and residues from biological origin from agriculture (including vegetal and animal substances), forestry and related industries including fisheries and aquaculture, as well as the biodegradable fraction of industrial and municipal waste.” The immense variety of natural resources requires a preselection of refinery feedstock and allows for a well-adapted design of value chains. Insofar, biorefineries will distinguish from petrochemical refineries in order to conform to the complexity in composition and regional distribution of living matter at the same time linking with agriculture and arable farming as key elements for a secure supply and a genuine, large expansion of available biomass feedstock. Significant progress has been made during the last decade with

regard to the industrial utilization of biomass and the manufacture of bio-based building blocks. Bio-based intermediates such as 1,3-propanediol, isobutanol, succinic acid, and 1,4-butanediol, which all were at laboratory level still in 2006 have meanwhile entered world-scale production.13

Part A of Industrial Biorefineries & White Biotechnology provides a comprehensive survey of biorefinery concepts and updated information about individual biomass refining unit operations, regional key aspects, and the road maps toward marketable products and energy in comparison to petrochemical refineries and process chains. Part B is dedicated to highlight White Biotechnology14 (also known as Industrial biotechnology or biotechnology applied to industrial processes) as a particularly promising gateway to a sustainable future. White biotechnology has positioned itself distinctly from Red biotechnology, which is aimed at medical processes and from Green biotechnology, which is biotechnology applied to agricultural processes such as genetically modified crops and plants.15 Part B of Industrial Biorefineries & White Biotechnology summarizes the achievements made by research and industry in microbial and enzymatic catalysis and throughout organic specialty chemicals, bioplastics, and in the utilization of biotechnology for food and personal care applications.

The editors would like to thank all the authors, who by their origin and their academic or industrial spheres of activity showcase the global scope of modern chemistry, for their commitment and for bringing in their knowledge, their professional experience, and their expertise.

Ashok Pandey
Rainer Höfer
Mohammad Taherzadeh
K. Madhavan Nampoothiri
Christian Larroche

13 Künkel A. Symbiosis of chemistry and biology: biodegradable and renewable polymers. 3F-Talks: Functional Fibres and Films. RWTH Aachen: DWI-Leibnitz Institute; March 2015.

Industriai Biorefineries and White Biotechnology

Industrial Biorefineries and White Biotechnology introduces modern biorefineries as an alternative and as an amendment to industrial crude oil and gas refineries, giving a complete review of the driving forces in modern industrial biotechnology and biochemistry. This book fills a gap in the current knowledge base and will play a key role in advancing technological perspectives in the field.

There has been a tremendous amount of recent scientific and technological development in the area of biorefining, including industrial processes and product development using "green technologies," often referred to as White Biotechnology. This book addresses the requirements for much-needed design concepts in modern biorefineries. Edited by a world-renowned collection of experts, the text merges industrial biorefinery and white biotechnology and is of immense use for students and researchers, including biotechnologists and bioengineers. The book also appeals to chemists and biochemists as well as marketing and product development managers in the chemical industry who are looking for summary reviews of the latest developments in biorefining and biotechnology.

Key Features:
- Provides information on the most advanced and innovative treatment processes and technologies for biomass
- Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery
- Gives an update of current biorefinery concepts including wood, algae, biogas, civilization, and hybrid biorefineries
- Discusses integration of processes and technologies for the pretreatment of biomass in an industrial scale
- Details fermentation and metabolic pathways to microbial fuels, chemical intermediates, chemical specialties, and biopolymers

Edited by Ashok Pandey, Professor, Biotechnology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Trivandrum, India; Rainer Höfer, Editorial Director, Ecosiris, Düsseldorf, Germany; Mohammad Taherzadeh, Professor, Swedish Centre for Resource Recovery, University of Borås, Sweden; K. Madhavan Nampoothiri, Scientist, Biotechnology Division, CSIR-Central Institute for Interdisciplinary Science & Technology, Trivandrum, India; and Christian Larroche, Professor, Polytech Clermont-Ferrand – Pascal Institute, University Blaise Pascal, Clermont-Ferrand, France.