

Algorithms for energy efficient data extraction from wireless sensor networks for environmental monitoring applications

Supriyo Chatterjea Paul Havinga

- Motivating application
 - Great Barrier Reef (GBR)
 - Problems with current setup
 - Our solution: Wireless sensor networks (WSNs)
- Algorithms
 - Taking advantage of:
 - Spatial correlations
 - Temporal correlation
- Future work

Current setup at Davies Reef

- Current setup at Davies Reef
 - Two points of data collection
 - Data is collected on a half hourly basis at the weather station and is stored on a logger
 - Data is retrieved manually periodically

- Problems with current setup
 - Unable to perform
 - Fine-grained monitoring
 - Real-time monitoring
 - Labour intensive
 - Data needs to be retrieved manually
 - Low resolution

Proposed WSN deployment at AIMS

AIMS Weather station Base station at Davies Reef Sea Microwave data transmission at 10.4GHz using humidity ducts above ocean as a wave guide

Challenges of WSN deployment

- Limited energy supply
 - Battery-operated
- Limited transmission capability
 - Devices sleep most of the time
- Large numbers + Harsh environment
 - Impossible for people to manage manually

Challenges of WSN deployment

Raw data collection

- High energy-consumption
 - Large amount of data needs to be transmitted
 - Sensor sampling
- Bottlenecks
 - Especially close to the sink node
- Poor data quality
 - Limited bandwidth can lead to dropped packets

Our approach

Initial deployment

Nelly Bay, Great Barrier Reef

Our approach

Initial deployment

Our approach

- Algorithms to take advantage of
 - Spatial correlations
 - Between sensor readings of adjacent sensor nodes
 - Temporal correlation
 - Between consecutive sensor readings of a single sensor

Spatial correlation

DOSA: Distributed and Self-Organizing Scheduling Algorithm for Data Aggregation

Spatial correlation - Results

DOSA: Distributed and Self-Organizing Scheduling Algorithm for Data Aggregation

Improvement of network lifetime and data quality

Temporal correlation

- Nodes predict readings locally using time-series forecasting
- Constant trend → Predictable → Reduce sampling & transmission
- Changing trend → Unpredictable → Increase sampling & transmission

Temporal correlation - Results

- Overall: Sensor sampling (EXCELL salinity sensor)
 - + Transceiver operation (RFM TR1001)
- > 90% data within user-specified threshold

Future work

- Communication protocols
 - Disturbance due to waves
- Combining algorithms
 - Take advantage of spatio-temporal correlations at the same time

