
Impact of Teagasc research results on policies on agricultural gas emissions.

Dominika J. Krol, Gary J. Lanigan, Karl G. Richards

Environment, Soils and Land Use Department Teagasc, Johnstown Castle Wexford, Ireland <u>dominika.krol@teagasc.ie</u>

National N₂O and NH₃

- Agriculture 33% of national GHG emissions, 98% of ammonia emissions
- Using Tier $1 N_2O$ comprised 36.5% of agriculture GHG emissions
- Bulk of ammonia from bovine manure management

GHG Programme Objectives

- Refine N₂O Emission Factors
 - Fertiliser
 - Dung/urine
 - Soil type/land-use
 - Incorporate mitigation into inventories
- Assess abatement options on
 - NH₃ EF's

IPCC Good Practice

- The largest sources accounting for 95% of emissions are key sources
- Higher tier methodologies should be used for Key Sectors
- Resources are focused on sources with significant impact on total emission estimate
- Best use of available resources
- Reduce uncertainties as much as practical
- **Tier 1** are simple methods with default values
- **Tier 2** are similar but with country specific emission factors and other data
- **Tier 3** are more complex approaches, possibly models. However should be compatible with lower tiers.
- Higher Tiers need peer-reviewed science

Inventory Refinement

- Until 2018, used Tier 1 emission factors for N₂O
- Tier 1 does not disaggregate in terms of N type, soil type, rate or timing
- Tier 1 PRP does not differentiate between dung and urine

Soil N > 8000 samples Vield c. 3500 samples

6

National Tier 2 N₂O Emission Factors

Tier 1 (default): Fertiliser = 1% Pasture, range and paddock = 2%

Grassland	EF %	Tier 2
CAN	1.49	1.39
Urea	0.25	0.25
Urea+NBPT	0.4	0.4
Urea+NBPT+DCD	0.11	0.11
Dung	0.31	0.31
Urine	1.18	1.18
Arable	EF %	
CAN	0.35	
Urea	0.27	
Urea+NBPT	0.2	
Urea+NBPT+DCD	0.16	

Harty et al. 2016 Science of the Total Environment 563, 576-586 Krol et al. 2016 Science of the Total Environment 568, 327-338 Roche et al. 2016 Ag. Ecosystems Environ. 233, 229-237

Tier 1 vs Tier 2 Emissions Profile

- Inorganic fertiliser share of emissions increases from 27% to 38%
- Pasture, Range and Paddock (Dung/urine) share decreases from 41% to 23%
- Total N₂O emissions reduced by 0.713 MtCO₂e = 10.8% reduction in N₂O – 3.6% reduction in agriculture nineralisation, deposition, 3% aching, 5% Inorganic deposition, 4%_leaching, 6% Fertiliser, 27%mineralisation, 3% crop residues,_ 3% cultivation of crop residues, 4% organic soils, cultivation of Inorganic 8% organic soils, Fertiliser, 38% 9% manure management, _/ 10% manure management, 14% ʻine Dung & Urine, 41% AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

NH₃ Emission Factors (%TAN)

Method	Emission Factor
Broadcast	48% (Summer) 26% (spring, autumn)
Trailing Hose	28.8% (summer) 20% (spring, autumn)
Trailing Shoe	19.2% (Summer) 18.2% (spring/autumn)
Baseline	50%
Acidification (pH 6.5)	35%
Acidification (pH 6.5)	15%
Urea	15.5%
Urea + urease inhibitor	0.8%
Baseline (old)	75%
Baseline (revised)	22.5%
Washed/scraped (1 hr)	6.8%
Baseline	27.7%
Baseline (revised)?	19.8%?
	Broadcast Trailing Hose Trailing Shoe Baseline Acidification (pH 6.5) Acidification (pH 6.5) Urea Urea Urea + urease inhibitor Baseline (old) Baseline (revised) Washed/scraped (1 hr) Baseline

Pilot Slurry Storage Facility

Storage facility with 12 tanks, vented sides simulating slatted shed

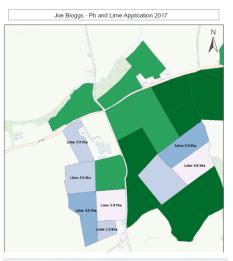
Custom built slatted tanks with removable slats

Pre-cast, storage tanks, 1m³ capacity

Gas chambers for NH3 and GHG sampling

easasc

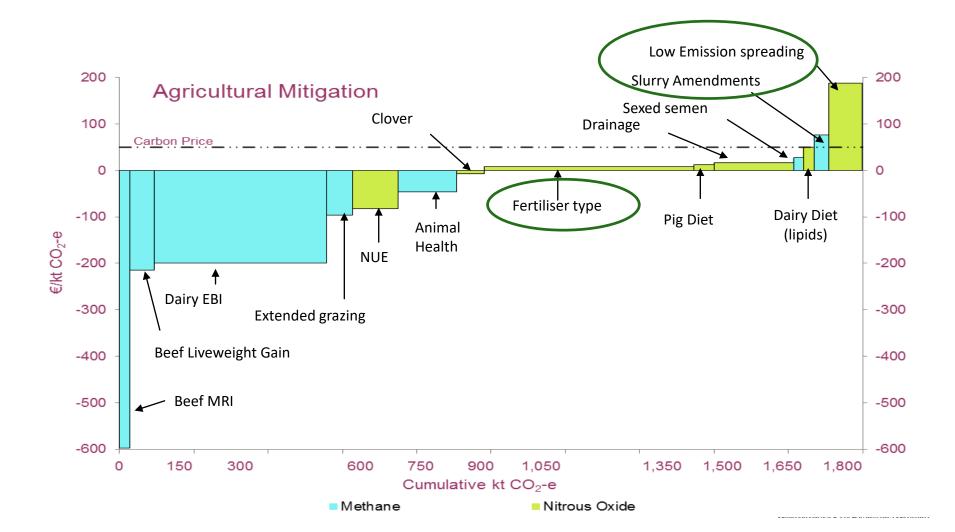
AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

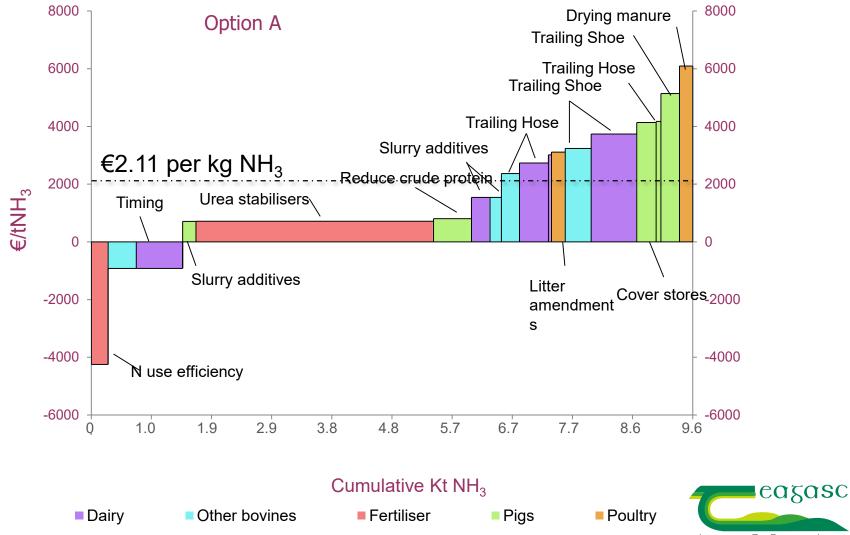

Potential to Reduce Emissions

- Moving to higher Tier N₂O reduces net emissions by 0.7million tonnes CO₂-e
- Shifting 45% of CAN to a stabilised urea product = Reduction of 0.5 million tonnes CO₂-e
- Dissaggregation of dung and urine will allow for feed strategies to be included
- Shifting urea to a stabilised product will reduce ammonia emissions by 3 kT NH₃ - 25% of total potential abatement
- Low emission slurry spreading and chemical amendments will reduce NH₃ by 5kT NH₃
- Allows for robust cost-benefit analysis of measures

Nutrient Use on Derogation Farms

- Intensive soil nutrient sampling & associated Fertiliser Plan
- 50% of all slurry produced on a derogation farm must be applied by the 15th June annually. After this date slurry can only be applied using Low Emission Slurry Spreading (LESS) equipment.
- From 20221, Minister for Agriculture can specify synthetic fertiliser nitrogen to be used on the derogation farms (i.e. urea + urease inhibitors)





Marginal Abatement Cost Curve (GHG)

Marginal Abatement Cost Curve (Ammonia)

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Higher Tiers = more activity data

- Increased no. of EF's more disaggregated activity data required.
- Teagasc approach via National Farm Survey
- Farms surveyed income now also C-footprinted
- Survey collects data on farm typology (dairy, tillage, etc), animal type/numbers, fertiliser & feed type/amount, housing/turnout date, yields, timing of slurry spreading, etc.
- Will be surveying farm facilities (housing/storage type)
- Need to further disaggregate based on soil type

Conclusions

- Improvements in inventory reporting increases flexibility of inventories as well as reducing uncertainties
- Can reflect abatement actions and monetarise them
- EF research is expensive
- Requirement for more granular activity data
- Moving to Tier 3 will increase need for data further

Thank you for your attention

We gratefully acknowledge the substantial funding from:

Department of Agriculture, Food and the Marine Grants: RSF 10-/RD/SC/716, 'AGRI-I' RSF 11S138, 'SUDEN' RSF 13 S 430, 'LowAmmo' RSF 15-655 'MINE'

